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L.V. Anderson on Slate

[1]

Its not just that a lot of people don’t like the way latex
condoms feel. They also don’ t use them. In the 2010
National Survey of Sexual Health and Behavior, the
largest-ever nationally representative sexuality study,
. . . Adults who’d had anal sex in the past year—the
highest-risk sexual act with regard to HIV
transmission—said they’d used condoms only 20 percent
of the time. . . . As Ron Frezieres, a Gates grantee who
has designed and executed clinical contraceptive trials for
more than 30 years, says, Even if a condom had twice the
breakage rate but everybody loves it, it enhances
sexmaybe that’s really incredible, to get 100 percent
product utilization of a product that breaks 2 percent
[instead of] a 50 percent utilization of a condom that
breaks 1 percent.



In-Host Basic Model

· x healthy cells, y infected cells, v virions

· Infection comes from initial conditions

Basic Model

x(0) = λ
d , y(0) = 0, v(0) > 0

ẋ = λ− dx − βxv
ẏ = βxv − ay

v̇ = ky − uv

Infection persists if R0 = βλk
adu > 1



In-Host Basic Model



In-Host Model with Environmental Infectious Agent



Coupling Model to Out-Host Interaction

Your textblock

Feng et al CITE for
Toxoplasma-like disease
Two modified basic models:

A In-Host

1 x healthy cells
2 y infected cells
3 v infectious agent

B Between-Host

1 S susceptible population
2 I infected population
3 E environmental

contamination level

Timescales separate models



Between-Host Model

· S Suseptible individuals, I infected individuals, E environmental
contamination %

Between-Host Model

S(0) = Λ
D , I (0) = 0, E (0) > 0

Ṡ = Λ− DS − BES

İ = BSE − AI

Ė = θ(v)I (1− E )− UE



In-Host Model with Environmental Infectious Agent

Ṡ = Λ− DS − BES

İ = BSE − AI

Ė = θ(v)I (1− E )− UE



Between-Host Reproductive Ratio

1 Decoupled Analysis

i. Assume timescales decouple in long term
ii. Out-host reproductive ratio controls if infection or virus free

equilibrium is the attractor

R0O =
θvβΛ

DAU

iii. R0O < 1 environment clears R0 plays usual role

2 Coupled Analysis

i. Backwards bifurcation: R0O > 1 then the environment can
sustain infections with R0 < 1



Inapplicability to HIV

1 HIV does not persist outside of a host

1 Can we reinterpret environment contamination as high risk
sexual behavior/drug use?

2 All individuals are at the same stage of infection

3



In-Host Viral Evolution

Parameters from CITE
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Nested SI model

Your textblock

CITE

1 S susceptible individuals

1 fixed birth rate
2 proportional death rate

2 I infected individuals

1 track infection age I (a, t)
2 β(a) transmission rate

depends on infection age
3 α(a) death rate depends

on age

3 β and α determined by in
host basic model

Ṡ(t) = λ− dS − S

∫
βI da

I (t, 0) = S

∫
βI da

∂

∂t
I (t, a) = −

(
∂

∂a
+ α(a)

)
I (t, a)



Population Infection Rate

Infection Rate =
∫
I (a)β(a) da

Age
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Population Infection Rate

∂
∂t I (t, a) = −

(
∂
∂a + α(a)

)
I (t, a)

Age
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Infections at time t

Time shift --> Infections at time t+c

Age Decay ---> Infections at time t+c



Nesting SI with basic HIV model

1 In-host model determines
β(a), α(a)

1 Transmission β(a) ∝ v(a)
proportional to viral load

2 Death rate...

1 proportional to
∫
yda?

2 Requires in-host
model that explains
10 year death

2 Viral evolution

1 Parameters may be time
dependent



Inapplicability to HIV

1 Transmission events are time discretized

1 Viral load evolution is on the timescale of days-weeks
2 Transmission events are on a similar timescale relatively brief

with high infectivity

2 HIV is highly dependent on network geometry



Stochastic In-Out Model

Incorporate geometry and discrete exposure:

A Stochastic Model

1 Graph Γ = (V ,E )

2 Vertices are individuals equipped with in host model.

3 Exposure events occur as a Poisson process on edges.

1 at exposure virtices exchange virus proportional to current viral
load

2 between exposure events system evolves as independent
in-host models



Stochastic In-Out Model



Stochastic In-Out Model



Stochastic In-Out Model



Stochastic In-Out Model



Stochastic In-Out Model



Stochastic In-Out Model



Difficulties and Benefits

Con

1 Requires geometric
information

2 Requires detailed data on
sexual habits

3 Analysis requires stochastic
calculus

Pro

1 Easy to implement

2 More obviously implements
the reality of HIV
transmission

3 Allows study of condom
usage, PrEP, behavior



Questions

1 Are there non-total-infection stable equilibria for connected Γ?

2 If Γ is a complete graph does the Stochastic model reproduce
Nested SI model behavior in the limit? what is the
appropriate limit?

3 Does the model display multiple infection or backwards
bifurcation for highly connected Γ or high rate of transmission
events?

4 How influencial is Γ geometry in determining infection rates?
What notions of graph theory indicate fast infection?

5 How can you distribute PrEP vertices to slow infection spread?

6 (Gates Question) What quantitative effect does an inferior but
frequently used condom have on transmission?
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We should have a better condom by now. heres why we dont.
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