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Abstract

Researchers at Lawrence Livermore National Lab have created HAR-
VEY, a predictive vascular simulation modeling blood flow in patient-
specific geometries. HARVEY is a massive fluid dynamics computation
run in parallel on many computational cores. A current bottleneck of
the computation speed is the load balancing, which does not account
for the tubular geometry of vascular systems. We propose a novel ge-
ometric algorithm for partitioning the vascular system into connected
regions of equal computational complexity. While we have no yet im-
plemented the partitioning as a load balancing scheme in HARVEY,
we have implemented the partitioning algorithm prototyping the algo-
rithm in C++. We hope to next implement and measure the perfor-
mance of the scheme in HARVEY load balancing.

A vascular system with HARVEY computed blood flow

This work performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344.



Shane Scott LLNL – Tubular Partitions

1 Internship Project

This summer at LLNL, I worked with Peer-Timo Bremer to design and
code the surface partitioning algorithm presented below!

1.1 Motivation: HARVEY

Imagine the medical power of a doctor with complete knowledge of her
patient’s blood flow. Blood flow information could be used to assess
potential clots or strokes, or even enable local control of drug delivery.
Researchers at Lawrence Livermore National Laboratory have built a
powerful blood flow simulation called HARVEY 1 [8]. HARVEY can
compute the bloodflow in an individual’s vascular geometry. According
to HARVEY’s authors, Erik Draeger and Amanda Randles:

“Building a detailed, realistic model of human blood flow is a
formidable mathematical and computational challenge. Liv-
ermore researchers are addressing this challenge through the
enhancement of HARVEY, an open-source parallel fluid dy-
namics application designed to model blood flow in patient-
specific geometries

LLNL researchers will use HARVEY to achieve a better un-
derstanding of vascular diseases as well as cancer cell move-
ment through the bloodstream. Computational results will
be validated through rigorous comparison with in vivo and
in vitro measurements.” 2

HARVEY requires immense computing power to compute a meter
scale sized simulation with resolutions as high as 10µm However, one
bottleneck in the speed of HARVEY’s simulation comes from its un-
balanced distribution of the computational work load to its 1,572,864
parallel computing cores.

1.2 Problem: Geometric Computational Load Balancing

To enable computation, the HARVEY simulation discretizes space as
a cubical grid. The geometry of a patient’s vascular structure is repre-
sented by marking grid elements as either inside the vascular system or

1Named for pioneering 16th century physiologist William Harvey.
2https://computation.llnl.gov/projects/predictive-vascular-modeling
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Figure 1: The geometry of a piece of a coronary artery. Observe the wide
variation in the density of occupied space between the larger aorta and its
smaller, branching arteries. The tree like tubes do not divide well into any
rectilinear grid.

outside. The simulation is distributed over approximately 1.6 million
computational cores. Each core is assigned some region of the grids.
Grid elements outside pose essentially no computational burden since
they require no updates.

Grid elements on the boundary or the interior of the vascular system
experience different fluid dynamics, and so represent different compu-
tational burdens. Grid elements on the boundary regions assigned to
different cores also require communication between cores, decreasing
parallelization of the simulation. Thus poorly assigned regions might
require some cores to perform more computations than others.

Thus a naive scheme of randomly assigning grid elements to regions
may assign some cores a much heavier computational load. This may
result in much longer computational times, as cores cannot proceed
with their next regional computation until neighboring regions have
completed their own.

The computational load balancing problem can be phrased as fol-
lows. Equip the integer lattice Z3 with a graph structure by be setting
x, y ∈ Z3 adjacent if their distance is 1. Let G ⊂ Z3 be a finite,

3



Shane Scott LLNL – Tubular Partitions

connected grid. Assume a fixed number of cores N and independent,
positive complexity costs per grid element:

· c0 per grid element interior to vascular system

· c1 per grid element on the boundary of the vascular system

· c2 per grid element on the boundary two regions

so that given a partition of the grid G =
⋃
j∈N Rj into connected

regions, we assume a linear cost per region

c(Rj) =
∑

i∈Z/3,g∈Rj

cisi(g)

where s(g) ∈ {0, 1}3 is a binary vector labeling the type of the grid
element g ∈ G. The problem is to compute a partition {Rj}j∈Z/N of
G minimizing the variance of {c(Rj)}j∈Z/N . While we do not hope to
solve this optimization exactly, we will instead attempt to compute a
low variance partition by making some assumptions on the geometry
of a patient’s vascular system and considering the smooth vascular
structure.

1.3 The Smooth Strategy

We do not consider capillaries moving into the organs, only veins and
arteries. This restriction gives the vascular system a simply connected,
tree-like structure of tubes. We thus assume a smooth topological
three-ball embedded in three-space B ⊂ R3 representing the vascular
system with boundary surface S = ∂B. In this smooth representation
the load balancing problem asks to compute a partition of the ball
B =

⋃
j Rj into connected regions {Rj}j∈N minimizing the variance in

the costs
cj = c0Vj + c1Aj + c2A

′
j

where Vj, Aj, A
′
j are the volume of Rj, the area of Rj ∩S, and the area

of ∂Rj − S, respectively. While the core-communicating-cost c2 is of
practical concern, we first disregard the inter-core-communication by
setting c2 = 0.
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Figure 2: This cerebral arterial network is a series of tubes. Color indi-
cates the length along the tube, which can be computed to give tubular
coordinates for the surface

We suggest a strategy of dimensionality reduction of the problem.
This reduction is performed by considering the surface S. The algo-
rithm can be summarized as:

1. Compute tubular coordinates q on the surface S

2. Obtain a measured tree T to reduce the problem dimensionality

3. Partition the tree by integration

4. Correspondingly partition the surface S

The arterial structure is reminiscent of a combinatorial tree, with
many local cylinders joining. We wish to construct corresponding coor-
dinates. The surface is almost a product T ×S1 of a metric tree T , and
a circle S1. This product fails to represent the surface S at the vertices
of T , where the circle should be replaced by a quotient of circles. So
we consider coordinates given by a quotient map

q :
⊔
e∈E

e× S1 → S

where E is the set of metric edges of the tree T . The quotient is such
that q is injective away from vertices, and at a vertex v of T so q(v)
is a wedge of deg(v) − 1 circles. We discuss construction of q in the
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following section. Compute from q measured metric tree which can
then be partitioned by integration from a desired point as follows. Let
xe : e → [0, `e] be a coordinate on length `e edge e ∈ E. If x ∈ T is
not a vertex then q ({x} × S1) is an embedded circle in R3. Then the
length `x of q ({x} × S1) gives the rate of change dA

dx
in surface area

A of the surface S. The minimal surface area Ax of a disk bounded
by q ({x} × S1) gives the rate of change of the volume dV

dx
. Obtain a

measure m on the tree by

dm

dxe
= c0

dV

dxe
+ c1

dA

dxe
= c0Axe + c1`xe

representing an estimate of the computing cost per edge length. Inte-
grating from a leaf, we can compute recursively a set of partition points
X ⊂ T such that T − X consists of N components of equal measure
m(T )
N

. Generically no partition point is a vertex.
Then we have q−1(x) for x ∈ X is a curve on S. Choose a minimal

area disk Dx bounded by q−1(x). The components of B−
⋃
xDx give a

partition of B approximating a solution to the discrete load balancing
problem.

1.4 Computing Tubular Coordinates

The smooth strategy outlined above requires tubular coordinates for
the surface S. In this section we outline a method for computing such
coordinates from the local properties of the surface. We begin by com-
puting a function measuring length along a tube.

We first compute the local curvature of the surface. At every point
p ∈ S we have a unit normal vector np perpendicular to the tangent
plane TpS at the point p. Choose any tangent direction v ∈ TpS and
consider the derivative of the normal vector field in that direction ∂vnp.
Since n is unit length, its derivative in any direction at p can have no
component in the np direction. So we have that ∂vnp ∈ TpS. This
allows us to define the shape operator at every point

Zp : TpS → TpS

v 7→ −∂vnp
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Figure 3: The minor principle curva-
ture gives a tangent line, but no di-
rection preference. Locally comput-
ing the shape operator results in es-
sentially randomly pointing forward
or backward arrows, as shown by the
arrows to the right. The choice of
unit eigenvector of the shape opera-
tor must be locally aligned to obtain
a smooth, integrable vector field.

Figure 4: We can maximizing the lo-
cal alignment of the unit minor princi-
ple curvatures by flipping some subset
of the discrete vector field. Now the
arrows point consistently in one di-
rection along the least-curvature line.
The potential φ shown by color gives
distance along the tube and is ob-
tained by integrating the vector field.

Figure 5: Level sets of the tubular
parametrization φ. Tangent lines to
these curves are the major principle
curvature directions. Each curve gives
a point in the Reeb graph of φ, so that
the tube gives a linear edge.
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The shape operator is symmetric, where for any vector v, w ∈ TpS

〈v|Zpw〉 = 〈Zpv|w〉.

This guarantees that Zp is orthogonally diagonalizable with real eigen-

values k
(1)
p ≥ k

(2)
p , called the major and minor principle curvatures, re-

spectively. For example, a perfect cylinder with radius r we would have

at any point p principal curvatures k
(1)
p = 1

r
in the circular direction

of the cylinder, and k
(2)
p = 0 in the direction of the cylinder’s height.

Hence the curvature directions suggest local gradient directions to our
desired coordinates. We hope to construct a Morse potential function
φ : S → R such that the gradient∇φ(p) ∈ TpS of φ at a point p ∈ S lies
in the minor principle curvature eigendirection at p. An approximate
discrete computation is discussed in the next section. The Reeb graph
of φ is a quotient space of S where the equivalence classes are the con-
nected components of level sets of φ. Since S is a topological sphere, its
Reeb graph is a metric tree T , discussed above. This gives the desired
coordinates on the surface. Observe however that this method is heav-
ily dependent on the local curvature directions. Small bumps or rapid
turns of the tubes will distort the local curvature frame, invalidating
the strategy even in the smooth case. In the computable discrete case,
relatively small amounts of noise can also distort the local curvature
and invalidate any proposed results.

1.5 Discretization and Local Computation

In practice the surface is represented as a simplicial complex given by
triangle mesh. This data consists of a finite set of vertices VS and
triplets of vertices defining the tringles TS approximating S. The ver-
tices of a triangle t ∈ TS are ordered t = (p(t)0, p(t)1, p(t)2) so that the
surface is consistently oriented. We represent the edges of t by the
vectors e(t)i = p(t)i+2 − p(t)i+1 for i ∈ Z/3. We can consider the surface
SD a piecewise-linear manifold, and we define a discrete analog of the
shape operator per triangle t ∈ TS. If we consider the perpendicular
edge vector e(t)i

⊥ = e(t)i × nt and angle θi between the normals across
edge i, the discrete shape operator can be written as

Zt =
∑
i

θi
‖e(t)i‖

(
e⊥(t)i
)†
e⊥(t)i.
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This local formulation depends only on the six points that make up
the triangle t and its adjacent triangles. From Zt we can compute
the minor principle curvature direction zt as the eigendirection for the
smaller eigenvalue.

Unfortunately there are two opposite unit vectors in this eigenspace.
Chose either unit vector. This may result in vectors pointing in oppo-
site directions at adjacent triangles, ruining the local continuity of zt.
See figure 3.

In [4] this is corrected by lifting the line bundle associated to the
eigendirection to a branched double cover of the surface, but we also
hope to correct small patches where the local geometry fails to agree
with the tubular structure. We discuss realignment in the following
section.

From the discrete vector field z, we hope to find the potential φ
whose gradient is given by z. Even if vectors are assigned locally con-
sistently, there does not exist any smooth unit vector field z on S, by
the hairy ball theorem. There are many points where the shape oper-
ator is degenerate with the principle curvatures equal and the minor
principle curvature direction undefined. So the discrete unit vector
field zt thus defined cannot be the gradient of any potential. But we
may hope for a least squares solution.

Given a scalar function f : VS → R defined by on vertices of S, we
define the discrete gradient per triangle t = (p0, p1, p2) ∈ TS using the
difference operator

∇f(t) = (f(p2)− f(p1))
e(t)0
‖e(t)0‖

+ (f(p0)− f(p2))
e(t)1
‖e(t)1‖

We can construct the potential φ by finding the least square solution
to to ∇φ = zof that is φ = (∇†∇)−1∇†z, though in practice this is a
linear system with on the order of 108 variables, so is solved numerically
by gradient descents.

1.6 Curvature Field Alignment

The shape operator Z defined per triangle gives two options for a unit
vector, as shown in figure 3 But additionally small patches of local
geometry where the tube turns sharply may have major curvature di-
rection parameterizing the cylinder’s height direction. See for example
6.
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Figure 6: Here the tube turns quickly, with a turn radius smaller than
its cross-sectional radius. This results in a small patch where the minor
principle curvature direction points around the tube’s circumference, rather
than down its length. To parametrize length we remove such patches by
rotating the vectors by 90◦.

So we assign random unit vectors for the eigenvectors of Z to form a
vector field u. The vectors ut at many triangles t will need to be flipped
180◦ in the tangent space of t. But we assume a minority of triangles
will also have vectors that should be flipped 90◦ or 270◦. Thus to
maximize local continuity we would like to compute a rotation scheme
r : TS → Z/4 achieving the maximum

max
r∈ZTS4

∑
t,t′∈TS

u†tRπ
2
(rt′−rt)(nt′) ut′ (1)

where Rθ(w) is the rotation matrix rotating about the axis w ∈ S2 by
angle θ.

We propose computing a rotation scheme by two successive solves
of MAXCUT on problem on the dual graph to the triangulation of
the surface. The MAXCUT problem is typically stated as follows:
Given a graph with edge weights, compute a bipartition of the vertices
which maximizes the total weight of edges between the two sides of
the partition. Though MAXCUT is in general NP-hard, there exists
polynomial time algorithms for planar graphs. [9]

We propose using the planar MAXCUT algorithm to compute first
which vectors should be rotated 90◦ or 270◦, i.e. compute x ≡ r
(mod 2). Then we change edge weights and compute MAXCUT again
to decide which vectors to flip 180◦.

Let G be the dual graph to the surface triangulation, so the vertices
of G are the triangles TS, and two vertices of G are adjacent to each
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Figure 7: Changes in tube diameter
can make the minor principle curva-
ture eigenline tangent to the diameter.

Figure 8: The first MAXCUT par-
titions the triangles into two sets,
shown in red and blue, with internal
agreement on an eigenline of the shape
operator.

Figure 9: The second MAXCUT par-
titions the triangles into two sets,
shown in read and blue, with internal
agreement on a forward direction.

Figure 10: A realigned vector field
post MAXCUT gives length along the
tube.
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other if and only if they share an edge as triangles. Since the surface
is a sphere, the dual graph G lies on the surface of a sphere, and so is
planar. Since both MAXCUT solves are on a planar graph, this can
be computed in polynomial time.

The first MAXCUT aligns the vectors’ linear spans. Assign edge
weights

ctt′ =
1

2

(
u†tRπ

2
(nt′) ut′

)2
+

1

2

(
u†tR

†
π
2
(nt) ut′

)2
−
(
u†tut′

)2
to adjacent pairs of triangles. This weight is positive if the vi and vj
are nearly perpendicular and negative if they are nearly aligned. So
the MAXCUT divides the triangles into two sets, where have largely
perpendicular vectors at their boundaries. We solve for a maximum
weight cut

TS = S0 ∪ S1

with S1 the smaller of the two sides. Then xt = 0 for all t ∈ S0 and
xt = 1 for all t ∈ S1. Update the vectors vt ← Rπ

2
(nt)vt for all t ∈ S1.

Now decide if vectors are aligned or anti-aligned, i.e. we compute
yt = floor(rt/2). Now assign new edge weights

c′tt′ = −v†tvt′

which are positive if the vectors are nearly anti-aligned, and negative
if the vectors are nearly aligned. Again solve for a maximum weight
cut TS = S ′0 ∪ S ′1 with S ′1 the smaller set. Then yt = 0 for all t ∈ S0

and yt = 1 for all t ∈ S1. Update the vectors vt ← −vt for all t ∈ S ′0.
So the rotation scheme is r = 2y + x.

After the two MAXCUT computations are completed, we obtain a
locally aligned vector field, as in figure 10. I do not know if in general
it is true maximum of the local alignment measure given in Expression
1. It is conceivable that maximally aligning the linear spans in the
first MAXCUT forces suboptimal anti-alignments in the second, which
might otherwise be perpendicular with a lower total cost. However,
since the line bundle associated to the minor principle curvature di-
rection is actually aligned away from singularities, such solutions seem
geometrically implausible.
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1.7 Future Work

We have here constructed a novel partitioning algorithm for tree-like
tubular surfaces and implemented C++ code available at https://

github.com/scottsha/minorcurvature. This allows geometry-specific
segmentation of a patient’s vascular system to provide better load bal-
ancing for the HARVEY blood flow simulation. The most immediate
future work is to implement the partitioning into HARVEY’s current
load balancing and determine the change in the load balancing.

Once the load is balanced, one may also need to consider noise and
the computational cost of communication between cores, as discussed
in the problem description.

The current algorithm should be extremely sensitive to local noise.
The curvature directions are computed locally per triangle from the
angles around the three edges. Lumpy surfaces or jitter in the positions
of points would invalidate computation of the tubular coordinates. A
more general method will need smoothing or alternative heuristics for
deciding when the local curvature does not agree correctly describe the
tubes.

The current algorithm also does not consider the communication
costs, which should be proportional to the area of the separating sur-
faces between regions. It is possible that HARVEY computational
speed can be improved with a slightly less even load balance that re-
duces the area of adjacent regions, thus reducing inter-core communica-
tion. A more detailed analysis of HARVEY’s computation is required
to assess the relative time costs of core communication, and, if signif-
icant, an additional step in the load balancing algorithm will need to
consider inter-core communication in the partitioning phase.

2 Impact of Internship on My Career

My career goals for this internship were to understand better the in-
dustrial and national lab demand for mathematicians. LLNL was the
perfect host for understanding the goals and types of positions available
at national laboratories.

LLNL’s summer student scholar program organizes a large number
of helpful seminars and programs. I attended interesting briefings on
very diverse topics and at a variety of levels: Bayesian statistics, ma-
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chine learning, neural network detection of extreme climate events from
sparse data, github version control, word2vec word geometry, CPR,
efficient computation of geometric intersections, resume writing, job
interviewing, graduate fellowships at LLNL, and the mission of LLNL
from the director.

One of the most exciting aspects of LLNL was the wide variety of
research conducted by visiting students. I participated in a poster ses-
sion held in early August and was able to learn a great deal about state
of the art techniques from all over scientific and engineering disciplines
from speaking to fellow interns.

I am most greatful that LLNL introduced me to computational
topological analysis. My research interests have become much more
computation focused over the summer. Most practically, this summer
LLNL taught me C++ and a lot of coding and developement skills,
and some of the concerns of numerical computation. I learned a great
deal about existing software. I know much more about practical math-
ematical problems that occur outside of academic mathematics, and I
am much more excited (and, frankly, vastly less anxious) about career
opportunities. I cannot thank NSF, ORISE, ORAU, and LLNL enough
for a fascinating, invigorating, and productive summer.
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