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Section 4.2 The Mean Value Theorem

Topics

1. Rolle’s Theorem

2. The Mean Value Theorem (MVT)

3. Consequences of the MVT: theorems

Learning Objectives
For the topics in this section, students are expected to be able to:

1. Determine whether Rolle’s Theorem and the Mean Value Theorem
can be applied to a given function and interval.

2. Apply Rolle’s theorem and the Mean Value Theorem to characterize
the roots, or the rate of change of a function (for example, to
identify where the derivative of a function is equal to a particular
value).

3. Give examples of functions whose derivatives meet certain criteria by
using the Mean Value Theorem.
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Example

Determine how many roots f(x) = x3 + x− 2 has, if any, on the interval
x ∈ [0, 3].
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Rolle’s Theorem

If f(x) is a continuous function defined on [a, b], and is differentiable
over (a, b). If f(a) = f(b), then there is at least one number c in (a, b)
at which f ′(c) = 0.

Theorem
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Participation Activity: Index Card

� Please work in groups of two or three

� Each group submits one completed card

� Print full names at the top of your card

� Every student in a group gets the same grade
� Grading scheme per question:

� 0 marks for no work or for students working by themselves
� 1 mark for starting the problem or for a final answer with insufficient

justification
� 2 marks for a complete solution

� Print today’s date at the top, which is

The activity consists of one or two of the examples in this lecture. Your
instructor will pass out index cards.
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Example

Your group is driving from Atlanta to Knoxville, TN. The trip requires
about 210 miles of driving. Let f(t) be the distance between where you
started, as a function of time, t. Assume the speed limit is 70 mph for
the entire journey.

a) If your group completes the trip after 2 hours of driving, sketch an
example of what f(t) could look like.

b) Is f(t) a continuous function over a closed interval?

c) Is f(t) a differentiable function?

d) Did you need to break the speed limit? Use your sketch and a
derivative to justify your reasoning.
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The Mean Value Theorem (MVT)

If f(x) is a continuous function defined on [a, b], and is differentiable
over (a, b). Then there is at at least one point, c ∈ (a, b), where

f(b)− f(a)

b− a
= f ′(c)

Theorem
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Example

Which functions satisfy the conditions of the MVT? For those that do,

identify all values of c that satisfy f(b)−f(a)
b−a = f ′(c), on interval (a, b).

a) f(x) =
√
x+ 1, on x ∈ [0, 3].

b) f(x) =
1

x2 + x
, on x ∈ [−2, 2].
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Consequences of the MVT

Proofs for the following theorems are stated in the textbook. If time
permits, we will prove all/most of these theorems in lecture.

1. If f ′(x) = 0 on (a, b), then f = C on (a, b), where C ∈ R.

2. If f ′(x) = g′(x) on (a, b), then f(x) = g(x) + C for all x ∈ (a, b),
where C ∈ R.
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Additional Example (if time permits)

1. Give a formula that could represent a function f(x), that satisfies
f ′(x) = g′(x) for x ∈ (−1, 1), g(x) = x2 + 1, and f(0) = 2.

2. Sketch a non-zero function f(x) that satisfies f ′(x) = 0 for all
x ∈ (−4, 2).

3. True or false: if f and g are differentiable functions and
f(x)− g(x) = 3 for all x ∈ (a, b), then f ′(x) = g′(x) for all
x ∈ (a, b).
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