Section 3.3 : Differentiation Rules

Chapter 3 : Differentiation

Math 1551, Differential Calculus

"A problem isn't finished just because you've found the right answer."

- Yōko Ogawa

Section 3.3 Differentiation Rules

Topics

- 1. Derivative rules
- 2. Higher derivatives

Learning Objectives

For the topics in this section, students are expected to be able to:

- 1. Compute the derivative of a function using derivative rules.
- 2. Solve equations involving derivatives (for example, to locate points on a graph where the tangent line has a particular slope).

Derivative Rules

· Recall that we can compute derivatives using the limit definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- There are rules that give us more efficient methods for computing derivatives of elementary functions.
- Proofs for most of derivative rules are in the textbook.
- For lecture, we will prove only one or two of the rules so that students have an understanding of where some of them come from.

Derivative Rules

Suppose f(x) and g(x) are differentiable functions, and $c \in \mathbb{R}$.

constant $rac{d}{dx}(c) =$ sum rule $rac{d}{dx}(f(x)+g(x)) =$

$$\frac{d}{dx}\left(cf(x)\right) =$$

Section 3.3 Slide 4

Derivative Rules

Suppose f(x) and g(x) are differentiable functions, and $n \in \mathbb{R}$.

power rule
$$rac{d}{dx}(x^n) =$$

product rule $rac{d}{dx}(f(x)g(x)) =$
quotient rule $rac{d}{dx}\left(rac{f(x)}{g(x)}
ight) =$

 e^x

$$\frac{d}{dx}\left(e^{x}\right) =$$

Example 1

Determine the values of x that indicate where the slope of the tangent line of $y(\boldsymbol{x})$ is zero.

$$y(x) = \frac{x^2 + 12}{2x - 11}$$

Higher Derivatives

Suppose f(x) is differentiable.

second derivative:
$$\frac{d}{dx}\left(\frac{d}{dx}f(x)\right) =$$

third derivative:
$$\frac{d}{dx}\left(\frac{d}{dx}\left(\frac{d}{dx}f(x)\right)\right) =$$

 n^{th} derivative:

Example 2

Determine the values of t that indicate where the second derivative of the function is zero.

a)
$$y(t) = 3t^2 - 2t^3 + \frac{t^4}{2}, \quad t \ge 0$$

b) $g(t) = e^t - \frac{t^2}{2}, \quad t \in \mathbb{R}$